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Prerequisites (Oxford courses):

• B2.2 Commutative Algebra
• C2.2 Homological Algebra
• C2.6 Introduction to Schemes
• C3.4 Algebraic Geometry

I will take everything from those courses for granted.

Overview

Kontsevich’s homological mirror symmetry is a conjecture on the derived equivalence of the A∞-
categories

DπFuk(X) ' DbCoh(X∨)

for a mirror pair (X,X∨) of Calabi–Yau varieties. The left-hand side is the derived Fukaya category
constructed from the symplectic geometry of X, known as the A-model, whereas the right-hand side
is the bounded derived category of coherent sheaves on X∨, known as the B-model. These notes
aim to fill in the gaps between undergraduate algebraic geometry and the essential backgrounds of
understanding DbCoh(X) when X is a smooth projective variety.

Some topics and results in derived categories of sheaves to be covered:

• Some initial results, e.g. DbCoh(X) ∼= Db
Coh(QCoh(X));

• Smoothness, perfect complexes;

• Serre duality, Serre functor, Grothendieck–Verdier duality;

• Ampleness, canonical bundle, Fano & Calabi–Yau varieties;

• Bondal–Orlov reconstruction theorem: For X,Y smooth projective variety with X Fano or anti-
Fano, if DbCoh(X) ∼= DbCoh(Y ), then X ∼= Y ;

• Fourier–Mukai transforms, Orlov’s result on equivalences between derived categories;

• Beĭlinson’s resolution, derived category of projective n-spaces DbCoh(Pn);

• DbCoh(P1) ' Db RepQ for the Kronecker quiver Q.

I will continue from the notes ([YS]) Triangulated categories and derived categories by Jinghui Yang
& Shuwei Wang. Warning. Currently these notes grew out from a talk and was not self-contained
in nature. In the future they may be extended to a more inclusive version, where I aim to present
derived categories and localisations rigourously.
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0 Derived Functors

This section mainly follows [李文威]. The relevant sections are 1.8, 1.11, 3.2, 4.6–4.9, 4.12.

Recall that from an Abelian category A we can build the homotopy category K(A) by taking
quotient by chain maps homotopic to zero in the chain complex category Ch(A), and the derived
category D(A) by (Verdier) localisation on the acyclic complexes in K(A). In particular, every quasi-
isomorphism of chains in A becomes an isomorphism in D(A) (and D(A) is universal with respect to
this property by construction). In general, K(A) and D(A) are not Abelian, but rather triangulated
categories. For all the technical details we refer to the notes from the previous talk. If A has enough
injectives, then D+(A) is equivalent to IA, the full subcategory of injective objects of A.

There is a natural way to define derived functor under the viewpoint of derived categories. First
we recall the classical definition. Suppose that A is an Abelian category with enough injectives. For
A ∈ Obj(A), let A → I• be an injective resolution of A. Suppose that F : A → B is a left exact functor.
Then the n-th right derived functor of F acting on X is given by RnF (A) := Hn(F (I•)).

Let K and K′ be triangulated categories, and Q : K → K/N and Q′ : K′ → K′/N ′ be Verdier localisa-
tions. Suppose that F : K → K′ is a triangulated functor (i.e. preserving distinguished triangles). The
naive idea is to seek for a functor G such that the following diagram commutes (and satisfies some
universal properties):

K K′

K/N K′/N ′

F

Q

G

Q′

For this we need the Kan extension from category theory. Let’s recap.

Definition 0.1. Consider functors Q : C → D and F : C → E . The left Kan extension of F by Q

consists of the following data:

• A functor LanQF : D → E ;
• A natural transformation η : F ⇒ LanQF ◦Q;

which satisfy the following universal property: for any functor L : D → E and natural transformation
ξ : F ⇒ L ◦Q, there exists a unique χ : LanQF ⇒ L such that ξ = (χ ◦Q) ◦ η.

C C

D E D E

Q

L

F Q

LanQF

F

L

ξ

∃!χ

η

Considering left Kan extension in the opposite categories, we could define right Kan extension. The
corresponding diagram is given by reversing all natural transformations in the above diagram.

Definition 0.2. Let F : K → K′ as above. If the left (resp. right) Kan extension LanQ(Q′ ◦ F ) (resp.
RanQ(Q′ ◦ F )) exists and is a triangulated functor, then it is called the right (resp. left) derived
functor of F , denoted by RF (resp. LF ).
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K K′ K K′

K/N K′/N ′ K/N K′/N ′

F F

Q

RF

Q′ Q

LF

Q′

Remark. Suppose that G : K → K′ is another triangulated functor with a natural transformation
η : F ⇒ G. If the right derived functor RG exists, then there is a canonical natural transformation
RF ⇒ RG by the universal property of right Kan extension.

K K′

K/N K′/N ′

F

Q

RF
Q′

G

RG

Then we focus on the derived categories. Note that an additive functor F : A → A′ between Abelian
categories induces the homotopy functor KF : K(A) → K(A′)1 which is triangulated. Consider the
Kan extensions:

K(A) K(A′) K(A) K(A′)

D(A) D(A′) D(A) D(A′)

KF KF

Q

RF

Q′ Q

LF

Q′

Assuming existence, RF (resp. LF ) is called the right (resp. left) derived functor of F . Their uniqueness
is ensured by the universal property. What about existence?

Definition 0.3. Let F : A → A′ be as above. Let J be a triangulated subcategory of K(A). We say
that J is F -injective (resp. F -projective), if:

• Resolution: For X ∈ Obj(Ch(A)) there exists Y ∈ Obj(J ) and a quasi-isomorphism X → Y

(resp. Y → X).

• Preserving null system: F (Obj(N (A) ∩ J )) ⊆ Obj(N (A′))

Note that here the null system N (A) is the acyclic complexes in Ch(A).

Remark. There is a similar notion for subcategories of A. Let I be an additive full subcategory of
A. We say that I is of type I (resp. type P) relative to F , if:

• For any X ∈ Obj(A) there exists Y ∈ Obj(I) and a monomorphism X → Y (resp. epimorphism
Y → X);

• For any short exact sequence 0 → X → Y → Z → 0 in A, if X,Y ∈ Obj(I) then Z ∈ Obj(I).
(resp. If Y, Z ∈ Obj(I) then X ∈ Obj(I).) In this case 0 → F (X) → F (Y ) → F (Z) → 0 is also
exact.

This should be considered as the generalisation of injective objects in A. Indeed the subcategory IA
of injective objects of A is of type I relative to any additive functor F .

1The cases for K+, K−, and Kb are identical.
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The terminology is taken from [李文威, 4.8.2]. In fact, this notion is what [Scha, 4.7.5] calls F -
injective. The two definitions are closely related. If I ⊆ A is of type I relative to F , then K(I) ⊆ K(A)

is F -injective.

Proposition 0.4

Let F : A → A′ be as above. Suppose that K(A) has an F -injective (resp. F -projective) subcat-
egory. Then the right (resp. left) derived functor RF (resp. LF ) exists.

Proof. Let I be an F -injective subcategory of K(A). By Theorem 3.5 in [YS], there is an equiva-
lence of category D(A) ' I/(N (A) ∩ I). Since F (Obj(N (A) ∩ I)) ⊆ Obj(N (A′)), by the
universal property of Verdier localisation there is a functor F ♭ : I/(N (A) ∩ I) → D(A′). Take
RF : D(A) → D(A′) to be the functor such that the following diagram commutes:

D(A) D(A′)

I/(N (A) ∩ I)

RF

i
F ♭

i−1

Next we need to verify that RF is indeed the Kan extension. See [李文威, Prop 1.11.2, Prop
4.6.4].

Corollary 0.5

Suppose that A has enough injectives (resp. projectives). Then the right (resp. left) derived
functor +RF (resp. +LF ) exists for any additive functor F : A → A′.

Proof. Immediate by [YS, Prop 3.10].

Proposition 0.6

Suppose that A has enough injectives. Let F : A → A′ be a left exact additive functor. Then for
A ∈ Obj(A). we have

RnF (A) = Hn ◦ RF (QA),

where QA ∈ D+(A) and Hn : D+(A′) → Ab is the n-th cohomology functor.

Proof. Take an injective resolution A → I•. This gives rise to a quasi-isomorphism A → I in K+(A),
where I lies in the F -injective subcategory K+(IA) of K+(A). Now we have the isomorphisms

RF (QA) ∼= RF (QI) ∼= Q′K+F (I).

Applying Hn gives the result.
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Proposition 0.7. Long Exact Sequence

Suppose that F : A → A′ has a right derived functor RF . For any distinguished triangle X →
Y → Z → X[1] in D(A), there is a canonical long exact sequence:

· · · Rn−1(Z) RnF (X) RnF (Y ) RnF (Z) Rn+1F (X) · · ·

Proof. Since RF is a triangulated functor, the result follows from applying the cohomology functor
H0.

Comparing to the classical definition, a great advantage of derived functors in this viewpoint is that
they compose in a canonical way.

Proposition 0.8

Consider the additive functors among Abelian categories:

A A′ A′′F F ′

Suppose that the right derived functors RF , RF ′ and R(F ′ ◦F ) all exist. Then there is a natural
transformation R(F ′ ◦ F ) ⇒ (RF ′) ◦ (RF ).

Moreover, if I is an F -injective subcategory of K(A) and I ′ is an F ′-injective subcategory of
K(A′) such that F (Obj(I)) ⊆ Obj(I ′), then I is F ′ ◦F -injective. And the natural transformation
above is an isomorphism:

R(F ′ ◦ F ) ∼= (RF ′) ◦ (RF ).

Proof. For the first part, the natural transformation R(F ′ ◦ F ) ⇒ (RF ′) ◦ (RF ) is induced by the
universal property of left Kan extensions (check it!) For the second part, take I ∈ Obj(I).
Using the construction in Proposition 0.4 we obtain

(RF ′) ◦ (RF )(QI) = Q′′ ◦ F ′ ◦ F (I) = R(F ′ ◦ F )(QI)

For X ∈ Obj(K(A)), by choosing quasi-isomorphism X → I we obtain the isomorphism
(RF ′) ◦ (RF )(QX) ∼= R(F ′ ◦ F )(QX). Finally check that this is compatible with the natu-
ral transformation given above.

Derived Bi-Functors

The tensor functor −⊗− and the Hom functor Hom(−,−) are two typical examples of bi-functors of
Abelian categories. Since we are interested in these functors, it is useful to treat the derived bi-functors
separately.

Definition 0.9. Let K,K1,K2 be triangulated categories. A bi-functor F : K1 × K2 → K is triangu-
lated, if

• F is triangulated in both slots;

• For any A ∈ K1 and B ∈ K2, the following diagram anti-commutes2:
2The term is used in [李文威]. It means that the two composite morphisms in the square differ by a sign.
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F (T1A,T2B) TF (A,T2B)

TF (T1A,B) T2F (A,B)

The definition of the left/right derived functor of a triangulated bi-functor is essentially identical.
We are interested in the cases where the triangulated categories are homotopy categories of Abelian
categories.

Now we consider Abelian categories A,A1,A2, where A admits countable products and coproducts.
Let F : A1 ×A2 → A be an additive bi-functor. Let

Ch⊕F := Tot⊕ ◦Ch2(F ) : Ch(A1)× Ch(A2) → Ch(A);

ChΠF := TotΠ ◦Ch2(F ) : Ch(A1)× Ch(A2) → Ch(A).

Then induce the triangulated bi-functors K⊕F,KΠF : K(A1)× K(A2) → K(A).

Let I1, I2 be triangulated subcategories of K(A1),K(A2) respectively. We say that (I1, I2) is F -
injective (resp. F -projective), if I2 is F (A1,−)-injective for any A1 ∈ Obj(K(A1)), and I1 is F (−, A2)-
injective for any A2 ∈ Obj(K(A2)).

Proposition 0.10

Let F : A1 ×A2 → A be as above.

1. If (I1, I2) is F -injective, then RF := RKΠF exists. We call it the right derived functor of
F ;

2. If (P1,P2) is F -projective, then LF := LK⊕F exists. We call it the left derived functor of
F .

Ext and R Hom

Recall that in C2.2 Homological Algebra. we define the ExtnA(A,B) to be the n-th right derived functor
of HomA(A,−) acting on B ∈ Obj(A). If A has enough injectives or projectives, then ExtnA(A,B) is
computed by an injective resolution B → I• of B or a projective resolution P • → A of A. By acyclic
assembly lemma, ExtnA(A,B) can also be computed as the n-th cohomology of the total complex
TotΠ(HomA(P•, Q•)) using projective resolutions P• → A and Q• → B.

Using the derived category, the Ext group can be defined without using injective or projective resolu-
tions:

Definition 0.11. Let A be an Abelian category. For chain complexes A, B in Ch(A), we define the
(hyper-)Ext group as

ExtnA(A,B) := HomD(A)(A,B[n]).

This definition gives an obvious multiplication structure on Ext:

ExtnA(B,C)× ExtmA(A,B) Extn+mA (A,C)

(f, g) f [m] ◦ g

In particular it makes Ext•A(A,A) a graded ring for any A ∈ Obj(A).

7



Next we will consider Ext as the right derived functor of Hom bi-functor HomA : Aop × A → Ab. It
induces the functor on the double complexes:

Hom•,•
A (−,−) : Ch(A)op × Ch(A) → Ch(Ab)× Ch(Ab).

Define Ch HomA(−,−) := TotΠ Hom•,•
A (−,−) : Ch(A)op × Ch(A) → Ch(Ab). It is not hard to verify

that Ch HomA is naturally isomorphic to the Hom complex Hom•
A:

Homn
A(A,B) :=

∏
k∈Z

HomA(A
k, Bk+n), dnHom(f) := dB ◦ f − (−1)nf ◦ dA.

Lemma 0.12

HomK(A)(A,B[n]) ∼= Hn(Hom•
A(A,B), d•

Hom).

Proof. Trivial by definition.

The bi-functor Ch HomA or Hom•
A induces the triangulated bi-functor

K HomA : K−(A)op × K+(A) → K+(Ab).

If A has enough injectives or projectives, then the right derived functor

R HomA : D−(A)op × D+(A) → D+(Ab)

exists.

Proposition 0.13

Suppose that A has enough injectives or projectives. For A ∈ Obj(D−(A)) and B ∈ Obj(D+(A)),
there exists a canonical isomorphism

Hn R HomA(A,B) ∼= HomD(A)(A,B[n]).

Proof. Taking the right derived functor in the previous lemma and note that the cohomology functor
Hn factors through the derived functor.

Corollary 0.14

Suppose that A has enough injectives. Let A,B ∈ Obj(A) (viewed as complexes concentrated at
degree 0). Then there is a canonical isomorphism

HomD(A)(A,B[n]) ∼= Rn Hom(A,−)(B)

Therefore the hyper-Ext is a generalisation of the usual Ext.
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Tor and ⊗L

In this part we only consider R-modules. For A,B ∈ Ch(R-Mod), from C3.1 Algebraic Topology we
recall the tensor product of complexes is given by the total complex A⊗RB := Tot⊕(A•⊗RB

•).

Definition 0.15. For A,B ∈ Ch(R-Mod), the total tensor product of A and B is the left derived
functor

A⊗L
R B := L(−⊗R −)(A,B).

L(− ⊗R −) : D−(Mod-R) × D−(R-Mod) → D−(Ab) exists because R-Mod has enough projectives. By
taking cohomology we have the (hyper-)Tor groups:

TorRn (A,B) := Hn(A⊗L
R B).3

Similar as hyper-Ext, using the theory of derived functors we can verify that the hyper-Tor reduces
to the usual Tor on Obj(R-Mod) (defined using projective resolutions).

Remark. In general QCoh(X) does not have enough projectives. We will have to instead use flat
resolutions to compute the total tensor product. See later.

Proposition 0.16. Derived Tensor-Hom Adjunction

Let A ∈ D(Mod-R), B ∈ D(R-Mod), and C ∈ D(Ab). There are canonical isomorphisms in D(Ab):

R HomAb(X ⊗L
R Y, Z) ∼= R HomMod-R(X,R HomAb(Y, Z))

∼= R HomR-Mod(Y,R HomAb(X,Z)).

1 Sheaves of Modules

Let us recall some basic algebraic geometry from C2.6 Introduction to Schemes. All rings are commu-
tative with multiplicative identity 1.

Definition 1.1. A scheme (X,OX) is a locally ringed space such that for any x ∈ X there exists an
open neighbourhood U ∈ Top(X) of x such that (U,OX

∣∣
U
) ∼= (SpecR,OSpecR) for some ring R.

Example 1.2. A variety over a field k is a reduced4, separated5, finite type6 scheme over k. An
affine variety is a closed subscheme of An := Spec k[x1, ..., xn]. A projective variety is a reduced
closed subscheme of Pn := Proj k[x0, ..., xn]. A quasi-projective variety is an open subscheme of a
projective variety.

Definition 1.3. Let (X,OX) be a scheme. A sheaf of OX-modules F on X is a sheaf F : Top(X)op →
Ab such that:

• For any U ∈ Top(X), F (U) is a OU -module;

• The module structure is compatible with restrictions on X.
3Cohomology and homology make no difference in algebra. By convention, Hn := H−n.
4i.e. all rings OX(U) are reduced rings.
5i.e. the diagonal morphism ∆: X → X ×Spec k X is a closed immersion.
6i.e. quasi-compact and all open affine rings are finite type over k.
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The category of OX -modules is denoted by OX -Mod. It is an Abelian category with enough injectives.

Recall the way we construct the affine scheme (SpecR,OSpecR) from any ring R. For any R-module M ,
we can construct the sheaf M̃ ∈ Obj(OSpecR-Mod) in a similar way (see the course notes for details).
In particular we have the stalks M̃p = Mp for p ∈ SpecR and the global sections M̃(SpecR) = M .
For a general scheme X, M̃ can be constructed from an OX(X)-module M .

Definition 1.4. Let F ∈ OX -Mod. We say that F is quasi-coherent, if it satisfies any of the
following equivalent conditions:

1. F is locally presented. That is, for any x ∈ X there exists a neighbourhood U ∈ Top(X) of
x such that there exists an exact sequence of the following form:⊕

i∈I OU
⊕

j∈J OU F
∣∣
U

0

2. For any x ∈ X there exists an affine neighbourhood U ∼= SpecR 3 x such that F
∣∣
U

∼= M̃ for
some R-module M .

3. There exists an affine open cover {Ui}i∈I of X such that F
∣∣
Ui

∼= M̃i for Ri-modules Mi, where
SpecRi

∼= Ui.

If additionally for each Ui in (3), F (Ui) is a finitely generated OUi-module, then we say that F is
coherent. The category of quasi-coherent (resp. coherent) sheaves is denoted by QCoh(X) (resp.
Coh(X)).

Definition 1.5. Let F ∈ OX -Mod. We say that F is a vector bundle (i.e. locally free of finite
rank) if for x ∈ X there exists an open neighbourhood U ∈ Top(X) of x such that F

∣∣
U
∼= O⊕n

U . The
category of vector bundles is denoted by Vect(X). F is called an invertible sheaf (or line bundle) if
additionally n = 1 for all x ∈ X.

Remark. For a coherent sheaf F on X, if the stalk takes the form Fx ∼= O⊕n(x)
X,x for any x ∈ X, then

F is a vector bundle. In particular, Vect(X) is a full subcategory of Coh(X) if X is locally Noetherian
(i.e. every open affine ring is Noetherian).

Why do we want quasi-coherence?

• Coh(X) and QCoh(X) are Abelian categories, but Vect(X) is not Abelian in general.

• When X = SpecR, M 7→ M̃ gives an equivalence of categories R-Mod ' QCoh(X).

• Pull-backs preserve quasi-coherence. If X is Noetherian, then push-forwards also preserve quasi-
coherence.

• If X is Noetherian, then QCoh(X) has enough injectives. (Let’s prove it below!)

• If X and Y are smooth projective varieties, then Coh(X) ' Coh(Y ) implies X ∼= Y (Gabriel–
Rosenberg).

Slogan. Quasi-coherent (resp. coherent) sheaves are the analogue of modules (resp. finitely generated
modules) over a ring.
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Functors of Sheaves of Modules

There are some constructions in OX -Mod.

• Coproduct:
⊕

i∈J Fi is the sheafification of the presheaf U 7→
⊕

i∈J Fi(U);

• Tensor product: F ⊗OX
G is the sheafification of the presheaf U 7→ F (U)⊗OU

G(U).

• Hom sheaf : HomOX
(F,G) is the presheaf U 7→ HomOU

(F
∣∣
U
, G
∣∣
U
), which is already a sheaf.

• Dual sheaf : F∨ := HomOX
(F,OX).

Definition 1.6. Let f : X → Y be a morphism of schemes. Let F ∈ Obj(OX -Mod) and G ∈
Obj(OY -Mod).

1. The direct image (or push-forward) f∗F of F is a OY -module given by U 7→ F (f−1(U));

2. The pull-back f∗G of G is a OX -module given by f∗G = f−1(G)⊗f−1OY
OX .

The key observation is the adjunction f∗ a f∗: there is a canonical isomorphism

HomOX
(f∗G,F ) ∼= HomOY

(G, f∗F ).

So it is natural to talk about the derived functors of f∗ and f∗.

Now let us derive some functors!

Functors Derived functors n-th derived functors
Global sections Γ(X,−) : Ab(X) → Ab RΓ(X,−) Sheaf cohomology Hn(X,−)

HomOX
(−,−) : (OX -Mod)op ×OX -Mod → Ab R HomOX

(−,−) Ext group ExtnX(−,−)

HomOX
(−,−) : (OX -Mod)op ×OX -Mod → OX -Mod RHomOX

(−,−) Ext sheaf ExtnX(−,−)

−⊗OX
− : OX -Mod ×OX -Mod → OX -Mod −⊗L

OX
− Tor group TorXn (−,−)

f∗ : OX -Mod → OY -Mod Rf∗ Higher direct image Rnf∗
f∗ : OY -Mod → OX -Mod Lf∗ Lnf∗

Derived Categories of Coherent Sheaves

We will always assume that X is Noetherian7. A good new and a bad news.

Proposition 1.7

Let X be a Noetherian scheme. Then QCoh(X) has enough injectives.

Proof. [HartsAG, Cor III.3.6] Cover X with a finite number of affine opens Ui = SpecAi, and let
F |Ui

= M̃i for each i. Embed Mi in an injective Ai-module Ii. For each i, let f : Ui → X be
the inclusion, and let G =

⊕
i f∗(Ĩi). For each i we have an injective map of sheaves F |Ui

→ Ĩi.
Hence we obtain a map F → f∗(Ĩi). Taking the direct sum over i gives a map F → G which
is clearly injective. Check that G is flasque8 and quasi-coherent. G is an injective object in
QCoh(X).

7i.e. quasi-compact and every open affine ring is Noetherian.
8i.e. restriction maps of F are surjective.
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Remark. Alternatively it can also be shown that QCoh(X) is a Grothendieck category (see [李文
威, §2.10]), thus having enough injectives.

In general Coh(X) does not have enough injectives. Think of X = SpecZ, where Coh(X) is the
category of finitely generated Abelian groups. Instead of DbCoh(X), we instead work with the full
subcategory Db

Coh(X) of DbQCoh(X):

Obj(Db
Coh(X)) :=

{
F ∈ DbQCoh(X) : Hn(F ) ∈ Obj(Coh(X)); Hi(F ) = 0 for |i| � 0

}
.

In general for a full Abelian subcategory A ⊆ B, the derived categories D(A) and DA(B) could be
quite different. However we have the following

Proposition 1.8

Let X be a Noetherian scheme. The natural functor DbCoh(X) → DbQCoh(X) defines a trian-
gulated equivalence of categories

DbCoh(X) ' Db
Coh(X).

Proof. [Huyb, Prop 3.5] It is clear that DbCoh(X) → DbQCoh(X) is fully faithful. It suffices to show
essential surjectivity. Consider a bounded complex of quasi-coherent sheaves with coherent
cohomology:

0 Fn · · · Fm 0

By induction suppose F j is coherent for j > i. Consider the surjections di : F i → im di ⊆ F i+1

and ker di → Hi(F •). We can find coherent subsheaves of F i
1 ⊆ F i and F i

2 ⊆ ker di ⊆ F i such
that the restrictions of the above morphisms are still surjective ([HartsAG, Ex II.5.15]). Now
replace F i by its subsheaf generated by F i

1 and F i
2, and let F i−1 be the preimage under di−1

of the new F i. Clearly the inclusions induce a quasi-isomorphism of the new complex with the
old one and now F i is also coherent.

So we can resolve a coherent sheaf by quasi-coherent sheaves injective in QCoh(X) in order to compute
DbCoh(X).

Derived Functors of Coherent Sheaves

In this part we address some technical issues in passing the functors from OX -Mod to Coh(X). We
follow [Huyb §3.3]. A lot of relevant results are scattered in Chapter III of [HartsAG]...

Theorem 1.9. Grothendieck Vanishing Theorem

Let X be a Noetherian topological space of dimension n. Then Hi(X,F ) = 0 for all F ∈
Obj(Ab(X)) and i > n.

Proof. See [HartsAG Thm III.2.7].
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Theorem 1.10

Let F be a coherent sheaf on a scheme X which is proper (e.g. projective) over a field k. Then
Hi(X,F ) is finite dimensional over k for all i.

Proof. See [HartsAG Thm III.5.2].

Corollary 1.11

Let X be a projective variety over a field k. The global section functor Γ(X,−) is a left exact
functor Coh(X) → k-Modfd. The right derived functor RΓ can be computed via the composition
DbCoh(X) ' Db

Coh(X) ↪→ DbQCoh(X) → Db(k-Mod).

Theorem 1.12

1. Let f : X → Y be a morphism of Noetherian schemes. Let F be a quasi-coherent sheaf over
X. The higher direct images Rif∗(F ) = 0 for i > dimX.

2. Let f : X → Y be a proper morphism of Noetherian schemes. Let F be a coherent sheaf
over X. The higher direct images Rif∗(F ) are also coherent for all i.

Proof. See [HartsAG Thm III.8.1 III.8.8].

Corollary 1.13

Let f : X → Y be a proper morphism of Noetherian schemes. The direct image f∗ : Coh(X) →
Coh(Y ) induces the right derived functor Rf∗ : Db

Coh(X) → Db
Coh(Y ).

Remark. For the derived functors − ⊗L − and RHom in Db, we must be able to take bounded
resolutions. This is possible when X is smooth projective. We discuss them in the next section.

Lemma 1.14. Projection Formula

Let f : X → Y be a proper morphism of projective schemes. For F ∈ Db
Coh(X) and E ∈ Db

Coh(Y ),
there is a canonical isomorphism

Rf∗(F )⊗L E ∼= Rf∗(F ⊗L Lf∗E).

This is a consequence of the classical projective formula f∗F ⊗E ∼= f∗(F ⊗ f∗E) where E is a vector
bundle and F is an arbitrary OX -module.

2 Coherent Sheaves on a Smooth Projective Variety

Smoothness

Let k be an algebraically closed field. Recall that in C3.4 Algebraic Geometry we define the non-
singular points of a quasi-projective variety by counting the dimension of (co)tangent space at that
point:
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Definition 2.1. A scheme X is non-singular (or regular)9 at x ∈ X if OX,x is a regular local ring.
That is, dimOX,x/mx

mx/m
2
x = dimOX,x. X is non-singular if it is non-singular at all points10.

The non-singularity can be characterised by Kähler differentials, which is the algebraic analogue of
the cotangent bundle.

Proposition 2.2

Let X be an irreducible variety over k. Then X is regular if and only if the sheaf of Kähler
differentials ΩX/k is a vector bundle over X of dimension n = dimX.

Proof. See [HartsAG Thm II.8.15].

Definition 2.3. Let X be a non-singular irreducible variety over k. Let n = dimX. We define the

• tangent sheaf/bundle TX := HomOX
(ΩX/k,OX), which is a vector bundle of rank n;

• canonical sheaf/bundle ωX :=
∧nΩX/k, which is a line bundle.

Perfect Complexes

Definition 2.4. Let F ∈ Obj(Db
Coh(X)). We say that F is a strictly perfect complex, if F is quasi-

isomorphic to a bounded complex of vector bundles on X. We say that F is a perfect complex if
there exists an affine cover {Ui}i∈I of X such that each F

∣∣
Ui

is quasi-isomorphic to some strictly
perfect complex Fi on Ui.

The perfect complexes form a full subcategory Perf(X) of Db
Coh(X).

Proposition 2.5. Smoothness via Perfect Complexes

Suppose that X is a Noetherian scheme. Then X is regular if and only if the inclusion Perf(X) →
Db

Coh(X) is an equivalence of categories.

Proof. Idea: On a regular scheme X, any coherent sheaf F admits a locally free resolution of length
dimX. This is the generalisation of the affine result: SpecR is an n-dimensional regular affine
variety if and only if every (finitely generated) R-module M admits a (finitely generated)
projective resolution of length n.

Remark. For a general variety X, we may introduce the quotient category (localisation?)

Sing(X) := Db
Coh(X)/Perf(X)

which measures how singular X is. Of course Sing(X) is trivial if X is regular.

By passing to Perf(X) we will be able to define the bounded version of RHom and ⊗L for coherent
sheaves when X is a smooth projective variety. In particular, for F ∈ Obj(Db

Coh(X)), the derived
dual

F∨ := RHom(F,OX) ∈ D+QCoh(X)

9It is bad to use the term smooth here, as it is reserved for a property of morphisms.
10Equivalently at all closed points, because the stalk at any non-closed point is a localisation of the stalk at a closed

point, and localisation preserves regular local rings.
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is in Db
Coh(X) when X is regular.

Serre Duality
Theorem 2.6. Serre Duality

Let X be a n-dimensional smooth projective variety over k with canonical sheaf ωX . For F ∈
Obj(Vect(X)), there are functorial isomorphisms of vector spaces

Hi(X,F )∨ ∼= Extn−iX (F, ωX) ∼= Hn−i(X,F∨ ⊗OX
ωX).

Proof. See [HartsAG §III.7]. The second isomorphism follows from the general facts ExtnX(E ⊗OX

F,G) ∼= Extn(E,F∨⊗OX
G) (here F needs to be a vector bundle) and Extn(OX , F ) ∼= Hn(X,F )

for OX -modules E,F,G.

Remark. If we take F = Ωp :=
∧pΩX/k and note that Ωn−p ∼= (Ωp)∨ ⊗OX

ωX ([HartsAG Ex
II.5.16.(b)]), then Serre duality takes the form

Hq(X,Ωp)∨ ∼= Hn−q(X,Ωn−p),

which is known in complex geometry.

Corollary 2.7

Let X be a n-dimensional smooth projective variety over k. Then Coh(X) has global homolog-
ical dimension n. That is, ExtiX(F,G) = 0 for i > n and any coherent sheaves F,G.

Remark. In particular, for a smooth projective curve C, Coh(C) has global homological dimension
1. It can be proven that every F ∈ DbCoh(C) is quasi-isomorphic to its cohomology:

F ∼=
⊕
i∈Z

Hi(F )[−i].

Serre Functor

Let us rephrase Serre duality using some category theory.

Definition 2.8. Let A be a k-linear category. A Serre functor S : A → A is a k-linear equivalence
such that for A,B ∈ Obj(A) there exists a functorial isomorphism of vector spaces

HomA(A,B) ∼= HomA(B,S(A)).

Lemma 2.9

Let A and B be k-linear categories with finite-dimensional Hom spaces. Suppose that they admit
Serre functors SA and SB respectively. Then any k-linear equivalence F : A → B commutes with
the Serre functors: F ◦ SA ∼= SB ◦ F .

Proof. This is an application of the Yoneda lemma: since F is fully faithful, one has for any two
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objects A,B ∈ A

Hom(A,SAB) ∼= Hom(FA,FSAB), Hom(B,A) ∼= Hom(FB,FA).

Together with the two isomorphisms

Hom(A,SAB) ∼= Hom(B,A)∨, Hom(FB,FA) ∼= Hom(FA, SBFB)∨,

this yields a functorial isomorphism

Hom(FA,FSAB) ∼= Hom(FA, SBFB).

Using the hypothesis that F is an equivalence and, in particular, that any object in B is
isomorphic to some F (A), one concludes that there exists a functor isomorphism F ◦ SA ∼=
SB ◦ F .

Remark. If A,B are triangulated categories, then the Serre functors are exact and triangulated.

In particular, Serre functors are useful in inverting adjunction pairs:

Corollary 2.10

Let A and B be as above. Let F : A → B be a k-linear functor. Then

G a F =⇒ F a SA ◦G ◦ S−1
B .

Proof. For A ∈ Obj(A) and B ∈ Obj(B),

HomA(A,SAGS−1
B B) ∼= HomA(GS−1

B B,A)∨ ∼= HomB(S
−1
B B,FA)∨ ∼= HomB(FA,B)

Serre functors gain their name from Serre duality. Indeed, let X be a smooth projective variety. We
define the the functor

SX : Db
Coh(X) → Db

Coh(X), F 7−→ F ⊗OX
ωX [dimX].

Proposition 2.11

The functor SX defined above is a Serre functor.

Proof. Let n = dimX. let E,F be vector bundles over X. By Serre duality we have

ExtiX(E,F ) ∼= Hi(X,E∨ ⊗ F ) ∼= Hn−i(X,E ⊗ F∨ ⊗ ωX)
∨ ∼= Extn−iX (F,E ⊗ ωX)

∨.

Using Corollary 0.14 we obtain

HomDb
Coh(X)(E,F [i]) ∼= HomDb

Coh(X)(F [i], E ⊗ ωX [n])
∨ ∼= HomDb

Coh(X)(F [i], SX(E))∨.

Therefore for any E,F ∈ Obj(Db
Coh(X)), we have

HomDb
Coh(X)(E,F ) ∼= HomDb

Coh(X)(F, SX(E))∨.
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Grothendieck–Verdier Duality

The target is to generalise Serre duality to a relative version. Let f : X → Y be a morphism of smooth
projective varieties. We define the relative dimension dim f := dimX − dimY and the relative
dualising bundle ωf := ωX ⊗OX

f∗ω−1
Y .

It is impossible to find a right adjoint to the direct image functor f∗ : Coh(X) → Coh(Y ), because we
have the adjunction f∗ a f∗ on the Abelian categories Coh(X) and Coh(Y ). However it is possible
after passing to the derived categories. We can construct Lf∗ a Rf∗ a f ! by Serre functors.

Theorem 2.12. Grothendieck–Verdier Duality

Let f : X → Y be a morphism of smooth projective varieties. Then the right adjoint of
Rf∗ : Db

Coh(X) → Db
Coh(Y ) exists and is given by

f !(F ) := Lf∗(F )⊗OX
ωf [dim f ].

Proof. By the previous part it suffices to take f ! := SX ◦ Lf∗ ◦ S−1
Y .

Grothendieck–Verdier duality has a more general form, which is a functorial isomorphism

Rf∗ ◦ RHomOX
(F, Lf∗(E)⊗OX

ωf [dim f ]) ∼= RHomOY
(Rf∗(F ), E)

for F ∈ Db
Coh(X) and E ∈ Db

Coh(Y ).

3 Reconstruction from Derived Categories

Ampleness

Let us first recall the structure of invertible sheaves on the projective space Pn. Let L be an invertible
sheaf on a scheme X. It is called invertible because the tensor operation with the dual sheaf gives

L⊗OX
L∨ = L⊗OX

HomOX
(L,OX) ∼= HomOX

(L,L) ∼= OX .

Therefore the set of invertible sheaves forms a group PicX under the tensor operation, called the
Picard group of X. For X = Pnk = ProjS, where S = k[x0, ..., xn], we have the twisting sheaf on
Pnk :

O(1) := S̃[1], S[1] is a graded S-module with S[1]d = Sd+1.

Let O(0) := OPn
k
, O(n) := O(1)⊗n for n > 0 and O(n) := O(−n)∨ for n < 0. It can be proven that

O(n) = S̃[n]. Then we have a subgroup of PicPnk isomorphic to Z. In fact it can be proven (e.g. using
divisors) that all invertible sheaves on Pnk are in this form. So PicPnk ∼= Z.

By definition, the gloval sections of O(n) are generated by the homogeneous elements in S of degree
n. In particular, the twisting sheaf O(1) has global sections generated by x0, ..., xn, and O(n) has no
global sections for n < 0.

Remark. For general X, using Čech cohomology it can be proven that PicX ∼= Ȟ1
(X,O×

X), where
O×
X is the sheaf of invertible functions, that is, O×

X(U) is the multiplicative group of OX(U) for
each U ∈ Top(X).
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Lemma 3.1. Euler Exact Sequence

There is a short exact sequence of sheaves on X = Pnk :

0 ΩX/k OX(−1)⊕(n+1) OX 0

Proof. See [HartsAG Thm II.8.13].

Definition 3.2. Let X be a scheme over the field k, and L be an invertible sheaf on X. We say that
L is very ample (relative to Spec k), if there exists a (locally closed) immersion ι : X → Pnk such that
ι∗(O(1)) ∼= L. This is equivalent to saying that L is generated by the global sections s0, ..., sn, where
si := ι∗(xi).

Lemma 3.3

Let X be a projective scheme over k and let L be a very ample invertible sheaf on X. Let
F ∈ Obj(Coh(X)). Then for n � 0, F ⊗OX

L⊗n is generated by finitely many global sections.

Proof. See [HartsAG Thm II.5.17].

Definition 3.4. Let X be a Noetherian scheme, and L be an invertible sheaf on X. We say that L is
ample if for any F ∈ Obj(Coh(X)), there exists n0 > 0 such that for n ⩾ n0, F ⊗OX

L⊗n is generated
by global sections.

Theorem 3.5

Let X be a projective variety over k, and L be an invertible sheaf on X. The following are
equivalent:

• L is ample;
• L⊗m is ample for some m > 0;
• L⊗m is very ample (relative to Spec k) for some m > 0.

Proof. See [HartsAG II.7.5, II.7.6].

Definition 3.6. Let X be a non-singular variety with canonical bundle ωX and anti-canonical bundle
ω∨
X . X is called a

• Fano variety, if ω∨
X is ample;

• Calabi–Yau variety, if ωX = OX ;

• anti-Fano variety11, if ωX is ample.

Remark. Consider compact Kähler manifolds which admit projective embeddings. By the celebrated
Calabi–Yau theorem, the three cases above correspond to Kähler metrics with positive, flat, and
negative Ricci curvature respectively.

11This non-standard terminology is used in [Bock].
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Remark. The projective space Pn is Fano because ωPn = O(−n − 1) ([HartsAG II.8.13, II.8.20.1]),
and O(n) is ample if and only if n > 0.

Remark. For a smooth projective curve C with genus g, C is Fano if g = 0, Calabi–Yau if g = 1 (i.e.
elliptic curve), and anti-Fano if g > 1.

Lemma 3.7

Let X be a projective variety over k, and L be an ample invertible sheaf on X. Then X ∼=
ProjΓ∗(X,L⊗m) for some m ∈ Z+, where Γ∗(X,L) is the graded ring

⊕∞
d=0 Γ(X,L⊗d).

Proof. See math.stackexchange.com/questions/57775 or (Stacks Project Lemma 28.26.9).

Bondal–Orlov Reconstruction Theorem

The target is to explain the idea of the following result. We follows [Huyb §4.1].

Theorem 3.8. Bondal–Orlov Reconstruction Theorem

Suppose that X and Y are smooth projective varieties over k. If X is Fano or anti-Fano, and
DbCoh(X) ' DbCoh(Y ), then X ∼= Y .

The proof can be divided into the following steps:

1. Identify point-like and invertible objects in the derived categories which generalise the invertible
sheaves and skyscraper sheaves on the variety.

2. Since point-like objects and invertible objects are preserved under the equivalence F : DbCoh(X) →
DbCoh(Y ), prove that OX is mapped to OY , and that Y is also Fano or anti-Fano.

3. Prove the graded ring isomorphism
⊕∞

d=0 Γ(X,ω⊗d
X ) ∼=

⊕∞
d=0 Γ(Y, ω

⊗d
Y ).

4. By ampleness of ωX (or ω∨
X), X can be reconstructed as Proj

(⊕∞
d=0 Γ(X,ω⊗d

X )
)

. Thus conclude
that X ∼= Y .

Definition 3.9. Let K be a k-linear triangulated category with a Serre functor S. An object P ∈
Obj(K) is called point-like of codimension d if

1. S(P ) ∼= P [d];
2. HomK(P, P [i]) = 0 for i < 0;
3. κ(P ) := HomK(P, P ) is a field.

Remark. Consider Db
Coh(X) for smooth projective variety k with the Serre functor SX . For x ∈ X,

the skyscraper sheaf κ(x) of the residue field κ(x) := OX,x/mx supported at x is a point-like object of
codimension dimX in Db

Coh(X). This explains the name. Moreover, we shall show that every point-like
object in Db

Coh(X) arises from them for X Fano or anti-Fano.
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Lemma 3.10

Suppose that X is a smooth projective varieties over k. If X is Fano or anti-Fano, then every
point-like object in Db

Coh(X) is isomorphic to κ(x)[m], where x ∈ X is a closed point and m ∈ Z.

Proof. See [Huyb 4.5, 4.6].

Remark. This is certain not true when X is not Fano or anti-Fano. For example, if X is Calabi–Yau,
then OX is a point-like object in Db

Coh(X).

Definition 3.11. Let K be a k-linear triangulated category with a Serre functor S. An object
L ∈ Obj(K) is called invertible if for any point-like object P ∈ Obj(K) there exists n ∈ Z such that

HomK(L,P [i]) =

{
κ(P ), i = n;

0, otherwise.

Lemma 3.12

Suppose that X is a smooth projective varieties over k. Every invertible object in Db
Coh(X) is of

the form L[m] where L is an invertible sheaf on X and m ∈ Z.

Conversely, if X is Fano or anti-Fano, then L[m] in an invertible object in Db
Coh(X) for L invertible

sheaf on X and m ∈ Z.

Proof. See [Huyb Prop 4.9].

Lemma 3.13

Suppose that X and Y are smooth projective varieties over k. If DbCoh(X) ' DbCoh(Y ), then
dimX = dimY .

Proof. For a closed point x ∈ X, the skyscraper sheaf

κ(x) ∼= κ(x)⊗ ωX = SX(κ(x))[− dimX].

Under the equivalence F : DbCoh(X) → DbCoh(Y ),

F (κ(x)) ∼= F (SX(κ(x))[− dimX]) ∼= SY (F (κ(X)))[− dimX] ∼= F (κ(x))⊗ ωY [dimY − dimX].

Taking the cohomology sheaf of the bounded complex F (κ(x)) and using that ωY commutes
with cohomology, we have

Hi(F (κ(x))) ∼= Hi+dimY−dimX(F (κ(x)))⊗ ωY .

By looking at the maximal and minimal i such that Hi(F (κ(x))) 6= 0, we deduce that dimX =

dimY .

Proof of Bondal–Orlov theorem assuming above lemmata.
Let F : Db

Coh(X) → Db
Coh(Y ) be an exact equivalence. It is clear that F preserves invertible
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objects. Then F (OX) is invertible and is of the form L[m] for some invertible sheaf L on Y .
Then F ′ := T−m ◦ (L∨ ⊗ −) ◦ F is another exact equivalence Db

Coh(X) → Db
Coh(Y ) such that

F ′(OX) ∼= OY . We simply replace F by F ′.

Assume that ωX is ample (the other case is similar). Let n = dimX = dimY . We have for
d ∈ N,

F (ω⊗d
X ) = F (SdX(OX))[−dn] ∼= SkY (F (OX))[−dn] ∼= SdY (OY )[−dn] = ωdY

and hence Γ(X,ωdX) = Hom(OX , ω
d
X)

∼= Hom(OY , ω
d
Y ) = Γ(Y, ωdY ). This induces an graded

ring isomorphism
⊕∞

d=0 Γ(X,ωdX)
∼=
⊕∞

d=0 Γ(Y, ω
d
Y ), where the multiplication is given by

Hom(OX , ω
d1
X )× Hom(OX , ω

d2
X ) Hom(OX , ω

d1+d2
X )

(s1, s2) Sd1X (s2)[−d1n] ◦ s1

Note that ωX is ample implies that ω⊗m
X is very ample for some m > 0, which implies that

X ∼= Proj
(⊕∞

d=0 Γ(X,ω⊗md
X )

)
If ω⊗m

Y is also very ample, then we may conclude that

X ∼= Proj
( ∞⊕
d=0

Γ(X,ω⊗md
X )

)
∼= Proj

( ∞⊕
d=0

Γ(Y, ω⊗md
Y )

)
∼= Y.

Finally we prove that ω⊗m
Y is very ample. The idea is that this is equivalent to that the

Zariski topology on Y has a basis of the form
{
Vβ : β ∈ Hom(OY , ω

⊗md
Y ), d ∈ Z

}
, where Vβ :={

y ∈ Y : α∗
y 6= 0

}
, and α∗

y : Hom(ω⊗md
Y , κ(y)) → Hom(OY , κ(y)) is the induced map f 7→ f ◦α.

But the equivalence F induces a homeomorphism X → Y , which maps Uα in X to VF (α) in Y .
This implies that ω⊗m

Y is very ample.

Remark. By Bondal–Orlov theorem, a smooth projective curve with genus g 6= 1 is completely
determined by its derived category of coherent sheaves. For elliptic curves, this is also true.

Theorem 3.14

Suppose that X and Y are smooth projective curves over k. If DbCoh(X) ' DbCoh(Y ), then
X ∼= Y .

Proof. See [Huyb Cor 5.46].

The theorem tells something more about the autoequivalence group of Db
Coh(X).

Corollary 3.15

uppose that X is a smooth projective variety which is Fano or anti-Fano. Then

Aut(Db
Coh(X)) ∼= Z× (AutX ⋉ PicX).

Proof. See [Huyb Prop 4.17].
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Fourier–Mukai Transforms

In analysis, an integral transform ΦK from Rn to Rn with kernel K : Rn×Rn → C takes the form

ΦK(f)(p) :=

∫
Rn

f(x)K(x, p) dx.

For example ΦK is the Fourier transform when K(x, p) =
1

2π
e−ix·p. We generalise this idea to algebraic

geometry to produce a class of functors between the derived categories.

Definition 3.16. Let X and Y be smooth projective varieties over k. Let πX : X ×k Y → X and
πY : X ×k Y → Y be the projection maps. For E ∈ Db

Coh(X ×k Y ), we define the integral transform
ΦEX→Y with kernel E to be the functor

ΦEX→Y : Db
Coh(X) → Db

Coh(Y ), F 7−→ R(πY )∗(π∗
X(F )⊗L E).

If ΦEX→Y is an exact equivalence of categories, then it is called a Fourier–Mukai transform.

A lot of derived functors we have known can be expressed as an integral transform:

• The identity functor id : Db
Coh(X) → Db

Coh(X) is isomorphic to ΦO∆
X→X , where O∆ := ∆∗OX is

the push-forward by the diagonal morphism ∆: X → X ×X.

• For E ∈ Db
Coh(X), the derived tensor product −⊗L − is isomorphic to Φ∆∗E

X→X .

• Let f : X → Y be a morphism. Γf ⊆ X × Y is the graph of f . Then OΓf
∈ Obj(Db

Coh(X × Y )).
The derived direct image Rf∗ is isomorphic to Φ

OΓf

X→Y and the derived pull-back Lf∗ is isomorphic
to Φ

OΓf

Y→X .

Proposition 3.17

Let ΦEX→Y : Db
Coh(X) → Db

Coh(Y ) be an integral transform with kernel E ∈ Db
Coh(X×Y ). Then it

admits left and right adjoints, respectively given by Φ
E∨⊗π∗

Y ωY [dimY ]
Y→X and Φ

E∨⊗π∗
XωX [dimX]

Y→X , where
E∨ := RHom(E,OX×Y ).

Proof. This is a nice application of the Grothendieck–Verdier duality. For G ∈ Db
Coh(X) and F ∈

Db
Coh(Y ),

HomDb
Coh(X)(Φ

E∨⊗π∗
Y ωY [dimY ]

Y→X (F ), G)

= HomDb
Coh(X)(R(πX)∗(π∗

Y F ⊗L E∨ ⊗ π∗
Y ωY [dimY ]), G)

= HomDb
Coh(X×Y )(π

∗
Y F ⊗L E∨ ⊗ π∗

Y ωY [dimY ], π!
XG)

= HomDb
Coh(X×Y )(π

∗
Y F ⊗L E∨ ⊗ π∗

Y ωY [dimY ], Lπ∗
XG⊗ π∗

Y ωY [dimY ])

= HomDb
Coh(X×Y )(π

∗
Y F ⊗L E∨, Lπ∗

XG)

= HomDb
Coh(X×Y )(Lπ∗

Y F,E ⊗L π∗
XG)

= HomDb
Coh(Y )(F,R(πY )∗(E ⊗L π∗

XG))

= HomDb
Coh(Y )(F,Φ

E
X→Y (G)).

Therefore we have Φ
E∨⊗π∗

Y ωY [dimY ]
Y→X a ΦEX→Y . For the right adjoint of ΦEX→Y , we can use

22



Corollary 2.10.

Proposition 3.18

For E ∈ Db
Coh(X × Y ) and F ∈ Db

Coh(Y × Z), define

F ◦ E := R(πXZ)∗(π∗
XYE ⊗L π∗

Y ZF ),

where πXY .πY Z .πXZ are projections from X × Y ×Z to X × Y , Y ×Z, and X ×Z respectively.
Then there is a natural isomorphism of functors

ΦF◦E
X→Z

∼= ΦFY→Z ◦ ΦEX→Y .

Proof. The checking is straightforward. See [Huyb Prop 5.10].

There is a famous difficult result due to Orlov:

Theorem 3.19. Orlov’s Theorem

Let X and Y be smooth projective varieties and let F : Db
Coh(X) → Db

Coh(Y ) be a fully faithful
exact functor. There exists a unique E ∈ Db

Coh(X × Y ) such that F ∼= ΦEX→Y .

In particular, if F is an equivalence, then it is isomorphic to a Fourier–Mukai transform with a
unique kernel.

Corollary 3.20. Gabriel Reconstruction Theorem

Suppose that X and Y are smooth projective varieties over k. If Coh(X) ' Coh(Y ), then X ∼= Y .

Proof. See [Huyb Cor 5.23, 5.24].

4 The Derived Category DbCoh(Pn)

In the section we focus on the structure of the derived category of coherent sheaves on Pnk .

Beĭlinson’s Resolution of Diagonal

Consider the identity functor id : Db
Coh(P

n) → Db
Coh(P

n). From the previous section we note that this
is isomorphic to the Fourier–Mukai functor ΦO∆ . In the following we show that the diagonal sheaf
O∆ has a finite resolution by vector bundles.

For E,F ∈ Obj(OPn-Mod), we define the exterior tensor product of E and F :

E ⊠ F := p∗E ⊗ q∗F ∈ Obj(OPn×Pn-Mod),

where p, q : Pn × Pn → Pn are the projections.
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Theorem 4.1. Beĭlinson Resolution

Let L be the vector bundle OPn(−1) ⊠ ΩPn(1) on Pn × Pn. The diagonal sheaf O∆ admits a
resolution by vector bundles:

0
∧n L · · ·

∧2 L L OPn×Pn O∆ 0

Proof. Consider the Euler exact sequence twisted by OPn(1):

0 ΩPn(1) O⊕(n+1)
Pn OPn(1) 0

Pulling back by p and q respectively, we obtain a morphism by the following composition:

q∗ΩPn(1) −→ q∗O⊕(n+1)
Pn

∼= O⊕(n+1)
Pn×Pn

∼= p∗O⊕(n+1)
Pn −→ p∗OPn(1).

Then tensoring p∗OPn(−1), we obtain a morphism ε : OPn(−1)⊠ ΩPn(1) → OPn×Pn .

Geometrically, we consider Pn as the projectivisation of the (n + 1)-dimensional vector space
V . OPn(−1) is the tautological bundle of Pn, whose fibre at ` ∈ Pn is the line ` ⩽ V itself.
ΩPn(1) is dual to the tangent bundle T twisted by OPn(−1). The fibre of ΩPn(1) at ` ∈ Pn is
the annihilator of ` in V ∨. The morphism ε is in fact the evaluation map ε(ℓ1,ℓ2)(v⊗ϕ) = ϕ(v),
where v ∈ `1 and ϕ ∈ `◦2.

Note that ε(ℓ1,ℓ2) is not surjective if and only if `1 = `2. It could be checked locally that the
image of ε is the ideal sheaf of the diagonal ∆ ⊆ Pn × Pn. Hence coker ε = O∆. We have an
exact sequence

OPn(−1)⊠ ΩPn(1) OPn×Pn O∆ 0ε

Then we can take the Koszul resolution:

0
∧n L · · ·

∧2 L L OPn×Pn O∆ 0

where the morphism
∧k L →

∧k−1 L is given by

s1 ∧ · · · ∧ sk 7−→
p∑
j=1

(−1)j−1ε(sj)s1 ∧ · · · ∧ ŝj ∧ · · · ∧ sk.

Let L−k :=
∧k L ∼= O(−k) ⊠ Ωk(k), L0 := OPn×Pn , and Lk = 0 for k > 0. Then the theorem states

that L• is (quasi-)isomorphic to O∆ in the derived category Db
Coh(P

n × Pn).

Corollary 4.2

Db
Coh(P

n) is generated as a triangulated category by the line bundles OPn(−n), ...,OPn(−1),OPn .

Proof. Note that O∆ is the Fourier–Mukai kernel of the identity functor. Beĭlinson resolution produces
a “resolution”12 of the identity functor by Fourier–Mukai functors

ΦL
−k

= Rp∗(p∗O(−k)⊗ q∗Ωk(k)⊗L q∗(−)) ∼= O(−k)⊗L Rp∗(Lq∗(Ωk(k)⊗L −))

∼= O(−k)⊗L
k RΓ(Pn,Ωk(k)⊗L −).

12In fact this is the Beĭlinson spectral sequence. We choose not to go into this topic.
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More specially, we split the Beĭlinson resolution into short exact sequences:

0 L−n L−n+1 Mn−1 0

0 Mn−1 L−n+2 Mn−2 0

...
0 M1 OPn×Pn O∆ 0

They are distinguished triangles in Db
Coh(P

n × Pn). For F ∈ Obj(Db
Coh(P

n × Pn)), applying the
exact functor Rq∗(Lp∗F ⊗L −) we obtain distinguished triangles

ΦMk+1(F ) ΦL
−k
(F ) ΦMk(F )

+1

Note that ΦL
−k
(F ) ∼= O(−k) ⊗L

k RΓ(Pn,Ωk(k) ⊗L F ) is a tensor product of OPn(−k) with a
complex of finite-dimensional k-vector spaces. So ΦL

−k
(F ) is contained in the triangulated

subcategory generated by OPn(−k). By induction, we have ΦMk(F ) ∈ 〈OPn(−n), ...,OPn(−k)〉.
Finally, we have

F = ΦO∆(F ) ∈ 〈OPn(−n), ...,OPn(−1),OPn〉 .

Remark. Note that tensoring the twisting sheaf OPn(1) is an exact autoequivalence of Db
Coh(P

n).
Therefore OPn(a− n), ...,OPn(a) also generate Db

Coh(P
n) for any a ∈ Z.

Remark. If we exchange the projections p and q, we obtain instead that

ΦL
−k
(F ) ∼= Ωk(k)⊗L

k RΓ(Pn,O(−k)⊗L F ).

Using the same method we can show that OPn ,Ω1
Pn(1), ...,ΩnPn(n) also generate Db

Coh(P
n).

Exceptional Sequence

Definition 4.3. Let K be a k-linear triangulated category. The objects A1, ..., An ∈ Obj(K) form an
exceptional sequence, if

HomK(Ai, Aj [n]) =

{
k, if i = j, n = 0

0, if i > j or if i = j, n 6= 0

If in addition HomK(Ai, Aj [n]) = 0 for all i, j and n 6= 0, then A1, ..., An ∈ Obj(K) form an strong
exceptional sequence.

If A1, ..., An generate K (i.e. the smallest triangulated subcategory of K containing A1, ..., An is K
itself), then they form a full exceptional sequence.

Corollary 4.4

OPn(−n), ...,OPn(−1),OPn is a full strong exceptional sequence of Db
Coh(P

n).

Proof. Using Beĭlinson resolution we have shown that they generate Db
Coh(P

n). That they form a
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strong exceptional sequence is due to the following facts (cf. [HartsAG II.5.13, III.5.1]):

Hom(OPn(i),OPn(i)[`]) = Hi(Pn,OPn) =

{
k, ` = 0;

0, otherwise.

For i > j,
Hom(OPn(i),OPn(j)[`]) = Hℓ(Pn,OPn(j − i)) = 0.

Tilting Object

Definition 4.5. Let K be a k-linear triangulated category. An object T ∈ Obj(K) is tilting, if:

1. R := HomK(T, T ) is a k-algebra of finite global dimension;

2. HomK(T, T [i]) = 0 for i 6= 0;

3. K is the smallest triangulated subcategory of K which contains T and is closed under isomor-
phisms and taking direct summands.13

Recall that the global dimension of R is the maximal projective dimension of an R-module.

Lemma 4.6

Let X be a smooth projective variety. If E1, ..., En is a full strong exceptional sequence in
Db

Coh(X), then E :=
⊕n

i=1Ei is a tilting object in Db
Coh(X).

Proof. The proof of finite global dimension of EndOX
(E) uses the path algebra of quiver. See [Craw

Prop 6.6].

Example 4.7. We know that
⊕n

i=0OPn(i) is a tilting sheaf on Pn. Its endomorphism algebra is

R = Sym•(V )/ Symn+1(V ).

The non-vanishing Hom is given by

Hom(OPn(i),OPn(j)) ∼= Symj−i(V ), i ⩽ j.

Theorem 4.8. Baer–Bondal Theorem

Let X be a smooth projective variety, and T be a tilting object in Db
Coh(X). Let R := EndOX

(T )

be the endomorphism algebra of T . Then the functor

R HomOX
(T,−) : Db

Coh(X) −→ Db(Modfg-R)

is an equivalence with quasi-inverse −⊗L
R T . Here Db(Modfg-R) is the bounded derived category

of finitely generated right R-modules.

Sketch of proof. We would like to show that R HomOX
(T,−⊗L

RT ) is the identity functor on Db(Modfg-R).
13For unknown reason we say that T classically generates K.

26



Observe that

R HomOX
(T,R⊗L

R T ) = R HomOX
(T, T ) = HomOX

(T, T ) = R,

since the non-zero Ext groups vanish. The smallest triangulated subcategory of Db(Modfg-R)

which contains R and its direct summands contains all finitely generated projective R-modules.
Since R has finite global dimension, every finitely generated R-module admits a finite projective
resolution. Hence the smallest triangulated subcategory of Db(Modfg-R) which contains R and
its direct summands is Db(Modfg-R) itself. This proves the claim.

Now −⊗L
R T identifies Db(Modfg-R) with the triangulated subcategory of Db

Coh(X) classically
generated by R⊗L

R T = T . By definition, this subcategory is Db
Coh(X) itself.

Quiver Representations

Definition 4.9. A quiver Q is a directed graph (Q0, Q1, s, t), where Q0 is the set of vertices, Q1 is
the set of arrows, s, t : Q1 → Q0 are the source and the target of an arrow respectively. A relation
in Q with coefficient in k is a k-linear combination of paths of length at least 2, each with the same
source and target. A bound quiver (Q,R) is a quiver Q with a set of relations R.

Definition 4.10. A representation V of the bound quiver (Q,R) consists of the following data:

• For each i ∈ Q0, a k-vector space Vi;
• For each a ∈ Qi, a k-linear map ϕa : Vs(i) → Vt(i);
• For each relation r ∈ R, the corresponding linear map is the zero map.

A morphism σ : V → W between representations of (Q,R) is the set of linear maps σi : Vi → Wi for
each i ∈ Q0 such that for each a ∈ Q1, the following diagram commutes:

Vs(a) Vt(a)

Ws(a) Wt(a)

φa

σt(a)σs(a)

ψa

Definition 4.11. For a quiver Q, a path is the concatenation of some arrows in Q1 (where a path
of length 0 is an element of Q0). The path algebra kQ is the free k-vector space generated by the
paths in Q, with the multiplication

a · b =

{
ab, if s(a) = t(b);

0, otherwise.

The path algebra of a bound quiver (Q,R) is the quotient algebra kQ/ 〈R〉.

Lemma 4.12

The category of finite-dimensional representations Repk(Q,R) of the bound quiver (Q,R) is
equivalent to the category of finitely generated right kQ/ 〈R〉-modules Modfg-kQ/ 〈R〉.

Example 4.13. For n = 1, the Kronecker quiver Q is the quiver
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0 1
a0

a1

without relations. The path algebra kQ is isomorphic to the endomorphism algebra EndOP1
(OP1 ⊕

OP1(1)). To see this, we write P1
k = P(ke0 ⊕ ke1). Note that

Hom(OP1 ,OP1) = Hom(OP1(1),OP1(1)) = k, Hom(OP1 ,OP1(1)) ∼= ke0⊕ke1, Hom(OP1(1),OP1) = 0.

Putting OP1 at 0, OP1(1) at 1, and ei at the arrow ai, we realise the endomorphism algebra of
OP1 ⊕OP1(1) as the path algebra of the Kronecker quiver.

Corollary 4.14

There is a (bounded) derived equivalence between the category of coherent sheaves on CP1 and
the category of finite-dimensional complex representations of the Kronecker quiver Q:

R HomOCP1
(OCP1 ⊕OCP1(1),−) : Db

Coh(CP
1) −→ Db RepCQ.

This is the B-side of the homological mirror symmetry of CP1. For the A-side on the mirror of CP1

(which is the Landau–Ginzburg model on C×), we need a lot more from sympletic geometry.14

Example 4.15. For n ⩾ 2, we define the Beĭlinson quiver Q of Pn to be

0
... 1

... 2 · · · n− 1
... n

a0,0 an−1,0

a0,n an−1,n

a1,0

a1,n

with the relations

R := {ai,jai+1,ℓ − ai,ℓai+1,j : 0 ⩽ j < ` ⩽ n, 0 ⩽ i ⩽ n− 1} .

The path algebra kQ/ 〈R〉 is isomorphic to the endomorphism algebra EndOPn (
⊕n

i=0OPn(i)).

Semi-Orthogonal Decomposition

The existence of a full exceptional sequence may be a too restrictive condition. Instead we may
consider a weaker notion.

Definition 4.16. Let A be a full triangulated subcategory of K. We define the following full subcat-
egories of K:

• Left orthogonal ⊥A = {T ∈ Obj(K) : ∀A ∈ Obj(A) HomK(T,A) = 0};

• Right orthogonal A⊥ = {T ∈ Obj(K) : ∀A ∈ Obj(A) HomK(A, T ) = 0}.

Both ⊥A and A⊥ are triangulated.

Definition 4.17. A semi-orthogonal decomposition of a triangulated category K is a sequence
A1, ...,An of full triangulated subcategories of K such that Aj ⊆ A⊥

i for j < i and that K is generated
by A1, ...,An. We write K = 〈A1, ...,An〉.

14May be the minimal knowledge of Floer homology and Fukaya categories...See Ballard’s Meet Homological Mirror
Symmetry for a comprehensive treatment of CP1 (and T 2!)
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Remark. If E1, ..., En is an exceptional sequence in K, then K admits a semi-orthogonal decomposition

K =
〈
〈E1, ..., En〉⊥ , 〈E1〉 , ..., 〈En〉

〉
.

Definition 4.18. A full triangulated subcategory A of K is called admissible if the inclusion functor
A ↪→ K admits both left and right adjoint.

In this case K admits semi-orthogonal decompositions K =
〈
A,⊥A

〉
=
〈
A⊥,A

〉
.

Corollary 4.19

Let X,Y be smooth projective varieties and F : Db
Coh(X) → Db

Coh(Y ) be a fully faithful functor.
Then

Db
Coh(Y ) ∼=

〈
Db

Coh(X),⊥Db
Coh(X)

〉
∼=
〈

Db
Coh(X)⊥,Db

Coh(X)
〉
.

Proof. Identify Db
Coh(X) as the essential image under F in Db

Coh(Y ). Orlov’s result implies that F is
an integral transform, and hence admits both left and right adjoint.
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